Sporadic bloody diarrhoea-associated thrombotic thrombocytopenic purpura-haemolytic uraemic syndrome: an adult and paediatric comparison

Charity A. Karpac, Xiaoning Li, Deirdra R. Terrell, Johanna A. Kremer Hovinga, Bernhard Lämmle, Sara K. Vesely and James N. George

1College of Public Health, 2College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA, and 3Department of Hematology and Central Hematology Laboratory, Inselspital, Berne University Hospital and University of Berne, Berne, Switzerland

Summary

Although diarrhoea-associated haemolytic uremic syndrome (HUS) in children is well described, the clinical features of bloody diarrhoea-associated thrombotic thrombocytopenic purpura (TTP)-HUS in adults are not documented. Twenty-one adults, 6.5% of the 322 adults in The Oklahoma TTP–HUS Registry, 1989–2006, have presented with bloody diarrhoea. There were no case clusters. Escherichia coli O157:H7 was identified in five patients, but many patients did not have appropriate studies. The annual incidence was \(0.68/10^6 \), 10-fold less than the incidence of diarrhoea-associated HUS in children in Oklahoma. Two (13%) of 16 patients in whom ADAMTS13 (A Disintegrin And Metalloproteinase with a ThromboSpondin type 1 motif, member 13) was measured had <10% activity. Severe neurological abnormalities (67%) and renal failure (62%) were common; seven patients (33%) died; no survivors have relapsed. Compared to the 38 other Oklahoma Registry patients with ADAMTS13 <10%, frequency of severe neurological abnormalities and death was not different; frequency of renal failure was greater; frequency of relapse was less. Compared to 5999 children with sporadic diarrhoea-associated HUS in published reports, frequency of renal failure and relapse was not different; frequency of severe neurological abnormalities and death was greater \((P < 0.05\) for all differences). Awareness of the continuous occurrence of sporadic bloody diarrhoea-associated TTP–HUS in adults is important for prompt diagnosis and appropriate management.

Keywords: thrombotic thrombocytopenic purpura, haemolytic uremic syndrome, Escherichia coli O157:H7, ADAMTS13, plasma exchange treatment.
a Thrombospondin type 1 motif, member 13) deficiency and to children with sporadic diarrhoea-associated HUS.

Methods

The Oklahoma TTP–HUS Registry

The Registry includes all consecutive patients for whom the Oklahoma Blood Institute (OBI) is requested to provide plasma exchange treatment for patients with a diagnosis of TTP or HUS (Vesely et al., 2003; George et al., 2004; Johnson et al., 2007). The OBI is the sole provider of plasma exchange services for all hospitals in 38 of the 77 Oklahoma counties. As the standard practice in this region is to treat all adult patients who are diagnosed with either TTP or HUS with plasma exchange, the Registry is an inception cohort of consecutive patients in whom the diagnosis of TTP or HUS was established and a decision to initiate plasma exchange treatment was made. Plasma exchange procedures used replacement with one plasma volume of fresh frozen plasma (frozen <8 h after donation), 24 h plasma (frozen >8 but <24 h after donation), or cryoprecipitate-poor plasma; plasma selection was based only on product availability. The Registry has enrolled and followed prospectively all 348 consecutive patients who had their first episode of clinically diagnosed TTP–HUS between 1 January 1989 and 31 December 2006. Because these syndromes in adults, with or without renal failure or neurological abnormalities, are commonly known as TTP (George, 2006) and because children with a diarrhoea prodrome are known as HUS, we describe adults with a prodrome of bloody diarrhoea as TTP–HUS. To focus our study on adults, 21 patients age 18 years old or less were excluded. To focus our study within a defined geographic region to estimate incidence, five additional patients who did not live in the counties served by the OBI were excluded; none of these five patients presented with bloody diarrhoea. The Oklahoma TTP–HUS Registry is approved by the institutional review boards of the University of Oklahoma Health Sciences Center and each participating hospital.

Patients were assigned in a hierarchical order to one of six predefined clinical categories related to associated conditions and potential aetiologies (Vesely et al., 2003): [1] following haematopoietic stem cell transplantation, [2] pregnant/postpartum, [3] drug association, [4] a prodrome of overt, severe bloody (bright red) diarrhoea, [5] presence of an additional or alternative disorder that may have caused the presenting features, and [6] idiopathic, if none of the criteria for the previous five clinical categories were fulfilled. Therefore, patients in the first three clinical categories may have presented with bloody diarrhoea but it was not considered to be the principal condition related to the onset of TTP–HUS. In addition, patients who presented with bloody diarrhoea and were assigned to category [4] could have had an additional disorder, such as systemic lupus erythematosus, or could have been subsequently diagnosed with an alternative disorder, such as sepsis or malignancy. For patients who had more than one episode of TTP–HUS, the first episode defined the clinical category and only data from the first episode are reported in this study.

Demographic, clinical and laboratory data were collected prospectively and systematically on standardized forms and entered into a Microsoft Access™ database (Vesely et al., 2003). Obesity was defined as a body mass index (BMI) ≥30 kg/m². Exacerbations was defined as recurrent thrombocytopenia following recovery to a normal platelet count that required resumption of daily plasma exchange treatment and was assumed to represent continuation of a single acute episode. Remission was defined as no plasma exchange treatment for at least 30 d. Relapse was defined as recurrence of TTP–HUS following a remission and was assumed to represent a subsequent, distinct acute episode (Vesely et al., 2003). Acute and chronic renal failure, minor and severe neurological abnormalities, and outcome measures were previously defined (Kojouri et al., 2001; Vesely et al., 2003; George et al., 2004). For this study, sporadic cases of patients with a prodrome of overt bloody diarrhoea were defined as cases that were separated by time or distance and had no apparent contact or common exposures.

Follow-up to the present time is complete on all 14 surviving patients who presented with bloody diarrhoea and 32 of 33 surviving patients with severe ADAMTS13 deficiency. To calculate incidence, we used census data from 2000 that provided age specific populations for each county in Oklahoma (U.S. Census, 2000).

Adults with severe ADAMTS13 deficiency

Serum for ADAMTS13 assays was collected immediately before the first plasma exchange procedure in 215 (92%) of the 234 patients who presented since 13 November 1995. ADAMTS13 activity was measured as previously described by immunoblot assay of von Willebrand factor multimers (Furlan et al., 1998; Bianchi et al., 2002). Severe ADAMTS13 deficiency was defined as <10% activity. Patients with severe deficiency were tested for ADAMTS13 inhibitory activity by measuring ADAMTS13 activity in mixtures of patient and normal sera (Furlan et al., 1998; Bianchi et al., 2002).

The 38 patients (age over 18 years) who had ADAMTS13 activity <10% and did not present with bloody diarrhoea were selected as a comparison group. These 38 patients are all patients in the Oklahoma TTP–HUS Registry who had ADAMTS13 activity <10%, except for the two patients included in the group who presented with bloody diarrhoea and two other patients who were subsequently diagnosed with sepsis as the aetiology of their disease and were therefore excluded from this analysis. Among these 38 patients who had ADAMTS13 activity <10%, three were postpartum, three also had systemic lupus erythematosus or Sjögren’s syndrome, 32 were idiopathic. ADAMTS13 inhibitory activity was identified in 35 of the 38 patients.
Children with diarrhoea-associated HUS: systematic literature review

Search strategy. Ovid software was used to search the Medline database from 1970 to 20 April 2007. The key words and MeSH terms searched for HUS were ‘hemolytic uremic syndrome’, ‘hemolytic-uremic syndrome’ and ‘HUS’. The key words and MeSH terms searched for diarrhoea-associated HUS were ‘Escherichia coli O157’, ‘Escherichia coli O157:H7’, ‘Escherichia coli’, ‘Escherichia coli infection’, ‘Shiga toxin’, ‘diarrhea’ and ‘bloody diarrhea’. The search was limited to English language and children. All articles identified by both one of the HUS terms and one of the E. coli or diarrhoea terms were retrieved. The bibliographies of all articles selected for review were searched to identify additional articles.

Study selection. All case series reporting 10 or more children with diarrhoea-associated HUS were identified. Articles reporting less than 10 patients were not reviewed to avoid reports of exceptional patients. Articles reporting patients accrued before 1970 were excluded to avoid analysis of outcomes before supportive care with dialysis was commonly available. Articles were selected for review if they reported original patient data and the HUS did not result only from an outbreak, but rather presented all children from a defined region and time.

Data extraction. Children with sporadic HUS were selected because they were comparable to the adults reported in this study. Articles reporting both sporadic and outbreak data, or both diarrhoea-associated and atypical HUS, were excluded unless the data were reported separately. Articles that had both children, age 18 years or less, and adult patients were not reviewed unless data for children were reported separately.

Results

Adults with bloody-diarrhoea-associated TTP–HUS

Over a period of 18 years (Table I), 1989–2006, 21 adult patients had overt, severe bloody diarrhoea as a dominant presenting feature of their TTP–HUS. These 21 patients represented 6·5% of all 322 adult patients in the Oklahoma Registry region who had their first episode of clinically diagnosed TTP–HUS during this time. Three other patients also presented with acute bloody diarrhoea but were not included because their TTP–HUS followed allogeneic stem cell transplantation (one patient) or quinine ingestion (two patients). None of the 21 patients had an alternative diagnosis as the cause of the clinical features of TTP–HUS. Patients who presented with overt, severe bloody diarrhoea were distinct; non-bloody diarrhoea was more common, occurring in 73 (24%) of the 298 adult patients who did not present with overt bloody diarrhoea.

The 21 patients with bloody diarrhoea-associated TTP–HUS were 21–82 years old (median, 59 years); 17 (81%) were women; 20 (95%) were white, one patient was black; five (24%) were obese (BMI ≥30 kg/m²). Fifteen patients had routine stool cultures; 14 were normal; one patient had Shigella sonnei infection. Stool was cultured for E. coli O157:H7 in 12 patients and was identified in five. In some patients stool cultures were only obtained after antibiotic treatment was begun or after diarrhoea had resolved. No source of E. coli O157:H7 infection was identified. The 21 patients presented in 11 of the 18 years of the Registry; there was no increased frequency during summer months (five of 21 patients presented between June and August). Patients 14 and 15 both lived in Oklahoma County and presented 1 week apart, but there was no apparent connection between them. No other patients presented within a month of each other.

In addition to bloody diarrhoea, abdominal pain was a major presenting symptom. Most patients saw a physician promptly after the onset of bloody diarrhoea (median, 1 d; range 0–18 d). Three patients were initially diagnosed with conditions that required urgent surgery. Patients 2 and 12 were diagnosed with ischaemic colitis; patient 2 had a right hemicolecctionomy and patient 12 had a total colectomy and ileostomy. Patient 8 had an appendectomy followed 6 d later by a right hemicolecctionomy. The interval between the onset of bloody diarrhoea and the onset of thrombocytopenia (platelet count <100 × 10⁹/l), indicating the onset of TTP–HUS, was 0–18 d (median, 4 d); the interval between the onset of thrombocytopenia and the diagnosis of TTP–HUS was 0–19 d (median, 2 d).

Fourteen patients (67%) had severe neurological abnormalities at presentation or during the course of their TTP–HUS; 13 (62%) had seizures, eight (38%) were comatose. Three other patients had minor neurological abnormalities (transient confusion, disorientation); four patients (19%) had no neurological abnormalities.
Table I. Demographics, clinical features, and outcomes of adults with bloody diarrhoea-associated TTP–HUS.

<table>
<thead>
<tr>
<th>No.</th>
<th>Age (years)</th>
<th>Race</th>
<th>Sex</th>
<th>Days from onset of bloody diarrhoea to diagnosis of TTP–HUS</th>
<th>Presenting symptoms (in addition to bloody diarrhoea)</th>
<th>Neurological abnormalities</th>
<th>Presenting laboratory data</th>
<th>Routinely Stool Culture for Escherichia coli O157:H7</th>
<th>Stool Culture</th>
<th>Days from diagnosis to death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63</td>
<td>W</td>
<td>M</td>
<td>9</td>
<td>Abdominal pain, nausea, vomiting</td>
<td>Seizure</td>
<td>15 25 1393 592 NA</td>
<td>Not done Not done NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>W</td>
<td>F</td>
<td>6</td>
<td>Abdominal pain, nausea, vomiting</td>
<td>Confusion</td>
<td>26 24 1282 327 NA</td>
<td>Normal Not done NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>79</td>
<td>W</td>
<td>F</td>
<td>7</td>
<td>Fever</td>
<td>Seizure, coma Focal seizure, coma</td>
<td>12 18 2575 583 NA</td>
<td>Normal Not done 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>W</td>
<td>F</td>
<td>6</td>
<td>Abdominal pain, weakness</td>
<td>Seizure, coma</td>
<td>33 19 2059 504 NA</td>
<td>Normal Not done NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>W</td>
<td>F</td>
<td>3</td>
<td>Abdominal pain, nausea, vomiting</td>
<td>Seizure, coma</td>
<td>15 21 1249 716 NA</td>
<td>Normal Not done 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>W</td>
<td>F</td>
<td>3</td>
<td>Abdominal pain, nausea, vomiting</td>
<td>Seizure, coma</td>
<td>16 22 3109 619 50</td>
<td>Not done Not done 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>68</td>
<td>W</td>
<td>M</td>
<td>4</td>
<td>Abdominal pain</td>
<td>Confusion</td>
<td>27 22 1095 239 100 Shigella sonnei Positive NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>W</td>
<td>F</td>
<td>11</td>
<td>Abdominal pain, nausea, vomiting</td>
<td>Diplopia, seizure</td>
<td>23 22 6660 575 100 Normal Negative NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>W</td>
<td>F</td>
<td>1</td>
<td>Confusion, nausea, vomiting</td>
<td>Right-side numbness, seizure</td>
<td>18 22 1976 97 <5</td>
<td>Not done Not done NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>82</td>
<td>W</td>
<td>F</td>
<td>5</td>
<td>Abdominal pain, weakness</td>
<td>Seizure, coma</td>
<td>11 24 2040 566 40</td>
<td>Not done Not done 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>69</td>
<td>W</td>
<td>F</td>
<td>10</td>
<td>Abdominal pain</td>
<td>Normal</td>
<td>77 15 1026 389 40</td>
<td>Normal Positive 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>69</td>
<td>W</td>
<td>F</td>
<td>10</td>
<td>Abdominal pain, nausea, vomiting</td>
<td>Focal facial seizure</td>
<td>28 22 1325 203 40</td>
<td>Normal Negative NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>59</td>
<td>W</td>
<td>F</td>
<td>5</td>
<td>Abdominal pain, nausea, vomiting</td>
<td>Normal</td>
<td>36 20 657 97 50</td>
<td>Normal Positive NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>67</td>
<td>W</td>
<td>F</td>
<td>10</td>
<td>Abdominal pain, nausea, vomiting, dyspnea</td>
<td>Confusion, seizure</td>
<td>15 20 1908 345 50</td>
<td>Normal Positive NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>53</td>
<td>B</td>
<td>F</td>
<td>21</td>
<td>Abdominal pain, nausea, vomiting, dyspnea</td>
<td>Confusion</td>
<td>21 24 3232 88 5</td>
<td>Not done Not done NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>79</td>
<td>W</td>
<td>F</td>
<td>1</td>
<td>Abdominal pain, nausea, vomiting, dyspnea</td>
<td>Seizure, coma</td>
<td>28 28 5022 309 50</td>
<td>Normal Negative 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>40</td>
<td>W</td>
<td>F</td>
<td>9</td>
<td>Abdominal pain, nausea, vomiting</td>
<td>Seizure, coma</td>
<td>25 20 7687 230 90</td>
<td>Normal Negative NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>W</td>
<td>M</td>
<td>7</td>
<td>Abdominal pain, nausea, vomiting</td>
<td>Normal</td>
<td>44 23 1387 1945 85</td>
<td>Normal Positive NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
At presentation with TTP–HUS, all patients were thrombocytopenic (platelet counts 11–77 × 10^9/l; median, 23 × 10^9/l) and anaemic (haematocrits 15–32%; median, 22%); all patients had fragmented red cells and increased levels of lactate dehydrogenase (LDH, 657–7687 U/l; median, 1530 U/l). Thirteen patients (62%) had acute renal failure; nine required dialysis. ADAMTS13 activity was measured in 16 patients; two (13%) had severe deficiency (<10%) with inhibitors of ADAMTS13 activity; in the remaining 14 patients ADAMTS13 activity was 40–100%. Although 50% ADAMTS13 activity is the lower limit in normal subjects, mildly reduced activity levels of 26–50% are common among hospitalized patients with many different illnesses (Mannucci et al., 2001). In three patients (14%) the serum creatinine never exceeded 97 μmol/l; stool culture identified E. coli O157:H7 in one; the other two had severe ADAMTS13 deficiency (one had her stool cultured for E. coli O157:H7 and it was negative).

Seven (33%) patients died; six were comatose prior to death; one patient had pre-existing congestive heart failure and chronic obstructive pulmonary disease as major causes of death. Three patients had responded to plasma exchange treatment before they died: (i) Two were comatose on admission and remained comatose; treatments were stopped when it was judged that there was no chance of recovery. (ii) The third responding patient died from complications of preexisting congestive heart failure and chronic obstructive pulmonary disease. The median number of plasma exchange treatments required to achieve a response in these three patients and the 14 surviving patients was six (range, 3–40). The median total number of plasma exchanges for the 14 surviving patients was 11 (range, 5–65). Patients 4 and 15 had exacerbations after 2–11 d of no plasma exchange treatment requiring repeated courses of daily plasma exchange; they required 65 and 54 plasma exchange treatments respectively. These two patients and nine others were also treated with glucocorticoids; one patient was treated with vincristine. The 14 patients continue to survive (follow-up 2 4–15 5 years; median, 7 7 years); one patient has residual neurological abnormalities, none have chronic renal failure and none have relapsed.

Comparison of adults with bloody diarrhoea-associated TTP–HUS to adults with TTP and severe ADAMTS13 deficiency

The 21 patients who presented with bloody diarrhoea were compared to the 38 patients with severe ADAMTS13 deficiency who did not have bloody diarrhoea (Table II). The patients who presented with bloody diarrhoea were older, more frequently white, and less frequently obese; women predominated in both groups. Patients who presented with bloody diarrhoea had more frequent and severe thrombocytopenia. The frequency of severe neurological abnormalities, severity of anaemia, frequency of
response to plasma exchange, and mortality were not different between the two groups. Patients who presented with bloody diarrhoea required fewer plasma exchange treatments to achieve a remission, had fewer exacerbations, and none have relapsed.

Comparison of adults with bloody diarrhoea-associated TTP–HUS to children with sporadic diarrhoea-associated HUS

A systematic review of published case series identified 5999 children with sporadic diarrhoea-associated HUS in 38 articles (reporting 39 case series) from 14 countries (Table III) (Dolislager & Tune, 1978; Raghupathy et al., 1978; Fong & Kaplan, 1982; Karmali et al., 1983, 1985; Communicable Disease Surveillance Centre, 1986; Rogers et al., 1986; Sheth et al., 1986; Badami et al., 1987; Kinney et al., 1988; Novillo et al., 1988; Lopez et al., 1989; Tarr et al., 1989; Martin et al., 1990; Milford et al., 1990; Abu-Arafeh et al., 1991; Rowe et al., 1991, 1993; Bitzan et al., 1993; Gianviti et al., 1994; Jernigan & Waldo, 1994; Van de Kar et al., 1995, 1996; Douglas & Kurien, 1997; Nevard et al., 1997; Siegler et al., 1997; Rowe et al., 1998; Oakes et al., 2006; Decludt et al., 2000; Wong et al., 2000; Elliott et al., 2001; Chandler et al., 2002; Cummings et al., 2002; Gerber et al., 2002; Trachtman et al., 2003; Lynn et al., 2005; Haus-Cheymol et al., 2006; Bergstein et al., 1992). Among the 2880 children in whom diarrhoea was described as either bloody or not bloody, 1890 (66%) had bloody diarrhoea. In both adults and children, essentially all patients were white. Among the children, boys and girls were equally affected, different from the predominance of women among the adults. E. coli O157:H7 was identified in stool cultures more frequently in children, but the range in the 26 studies reporting these data varied greatly, from 2% (Lopez et al., 1989) to 100% (in two studies that used stool culture identification of E. coli O157:H7 as an inclusion criterion) (Kinney et al., 1988; Chandler et al., 2002). Adults had more frequent severe neurological abnormalities, more severe thrombocytopenia and anaemia, and a higher mortality.
Table III. Comparison of adults with TTP–HUS who presented with bloody diarrhoea to children with sporadic, diarrhoea-associated (diarrhoea-positive) HUS identified from a systematic review of published reports.

<table>
<thead>
<tr>
<th>Patients</th>
<th>Adults</th>
<th>Children</th>
<th>P-value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race (white)</td>
<td>95%</td>
<td>95% (726/767)</td>
<td>1.000</td>
<td>(Novillo et al, 1988; Gianviti et al, 1994; Chandler et al, 2002; Lynn et al, 2005)</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>81%</td>
<td>52% (2314/4430)</td>
<td>0.009</td>
<td>(Communicable Disease Surveillance Centre, 1986; Rogers et al, 1986; Kinney et al, 1988; Lopez et al, 1989; Martin et al, 1990; Milford et al, 1990; Jernigan & Waldo, 1994; Chandler et al, 2002; Trachtman et al, 2003)</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>22</td>
<td>29</td>
<td><0.001</td>
<td>(Kinney et al, 1986; Kinney et al, 1993; Chandler et al, 2002; Trachtman et al, 2003)</td>
</tr>
</tbody>
</table>
Table III. (Continued).

<table>
<thead>
<tr>
<th>Patients</th>
<th>Adults</th>
<th>Children</th>
<th>P-value</th>
<th>References</th>
</tr>
</thead>
</table>

Demographics, clinical features, and outcomes of the 21 adult patients who presented with a prodrome of bloody diarrhoea, 1 January 1989 to 31 December 2006, were compared to children with sporadic, diarrhoea-associated HUS identified by a systematic literature review. Not all variables were described in all articles; the numbers in parentheses describe the actual number of children reported with the variable and the total number of children in the articles (citations provided) that described that variable.
Comparison of the incidence of adults with bloody diarrhoea-associated TTP–HUS to the incidence of children with diarrhoea-associated HUS

The adult population included in the Oklahoma TTP–HUS Registry region was 1 720 144. Therefore the estimated annual incidence of adults with bloody diarrhoea-associated TTP–HUS in this region was 0·68 cases/10^6. There was no difference in the incidence between the eight counties designated by the U.S. Census as urban (U.S. Census, 2000) [0·83/10^6; 95% confidence interval (CI), 0·40–1·27] and the 50 counties designated as rural (0·49/10^6; 95% CI, 0·13–0·86).

During the 5 years, 2002–2006, 31 children (ages 2 months–9 years) were hospitalized at The Children’s Hospital of Oklahoma with a diagnosis of HUS. Twenty-eight (90%) children had diarrhoea-associated HUS; the diarrhoea was bloody in 23. The occurrence of HUS was sporadic in 26 children; in one family two siblings were hospitalized 2 days apart. E. coli O157:H7 and/or Shiga toxin were identified in 19 (68%) of these 28 children; no source of infection was identified. The demographics, clinical features, and outcomes of these 28 children were different from the 5999 children identified from our systematic review, except that the platelet counts (median, 34 × 10^9/l) and the frequency of white children (75%) were less (P < 0·01). The population of children in the State of Oklahoma was 892 360. Therefore the estimated annual incidence of children with diarrhoea-associated HUS in Oklahoma was 6·3 cases/10^6. This estimate was not different from the annual incidence described in the 15 studies reporting these data, 7·9 cases/10^6 (95% CI, 4·8–11·0/10^6) (Communicable Disease Surveillance Centre, 1986; Rogers et al, 1986; Kinney et al, 1988; Tarr et al, 1989; Martin et al, 1990; Milford et al, 1990; Rowe et al, 1991; Bitzan et al, 1993; Gianviti et al, 1994; Jernigan & Waldo, 1994; Decludt et al, 2000; Cummings et al, 2002; Gerber et al, 2002; Lynn et al, 2005; Haus-Cheymol et al, 2006).

Discussion

This is the first prospective cohort study of adults with bloody diarrhoea-associated TTP–HUS. Twenty-one patients were identified during the 18 years of The Oklahoma TTP–HUS Registry, 6·5% of all adult patients. The estimated annual incidence of adults with bloody diarrhoea-associated TTP–HUS in our region was 0·68 cases/10^6, 10-fold less than the estimated annual incidence of children with diarrhoea-associated HUS in Oklahoma (6·3 cases/10^6) and in 15 previously published reports from other regions (7·9 cases/10^6). Although there are no previous direct comparisons of adults and children, E. coli O157:H7 infections and associated HUS are often described as more common in young children; this may be related to a decreased density of Shiga toxin glycolipid receptors in glomeruli of older children and adults (Lingwood, 1994). It has also been suggested that older adults have an increased susceptibility to E. coli O157:H7 infections and associated HUS (Carter et al, 1987; Boyce et al, 1995; Slutsker et al, 1997; Besser et al, 1999; Dundas et al, 1999, 2001; Reiss et al, 2006). Occurrence was not related to seasons, although diarrhoea-associated HUS in children is usually reported to be more common during summer months (Boyce et al, 1995; Besser et al, 1999).

Escherichia coli O157:H7 was considered to be the possible aetiology of bloody diarrhoea-associated TTP–HUS, since it has the strongest association with diarrhoea-associated HUS in children (Tarr et al, 2005), but it was identified in only five patients. The lower rate of identification of E. coli O157:H7 among adults may be because of less awareness of sporadic E. coli O157:H7 infection resulting in fewer and delayed stool cultures. Prompt stool cultures are critical for the identification of E. coli O157:H7 since isolation rates decline rapidly during the first days of illness (Mead & Griffin, 1998). All cases were sporadic, there were no case clusters, and there were no identified sources of E. coli O157:H7 infection. This is consistent with other data that most cases of E. coli O157:H7 infection and related HUS are sporadic, not associated with outbreaks (Pai et al, 1984; Remis et al, 1984; Tarr et al, 2005; Maki, 2006; Karpac et al, 2007).

Two (13%) patients with bloody diarrhoea-associated TTP–HUS had severe ADAMTS13 deficiency; these two women had demographic and clinical features similar to other patients with severe ADAMTS13 deficiency and neither had serum creatinine values greater than 97 μmol/l (Vesely et al, 2003; Terrell et al, 2005). In patients with severe ADAMTS13 deficiency, bloody diarrhoea may be caused by mesenteric microthrombi resulting in haemorrhagic mucosal ischaemia and ulceration, pathologically similar to Shiga toxin-induced haemorrhagic enterocolitis (George, 2006).

The demographic and clinical features of the adult patients who presented with bloody diarrhoea had both similarities and differences when compared to adults with severe ADAMTS13 deficiency and to children with diarrhoea-associated HUS. Similarities to adults with severe ADAMTS13 deficiency included female predominance, frequent severe neurological abnormalities, and a high mortality in spite of frequent apparent responses to plasma exchange treatment; differences included older age, predominance of white race, frequent renal failure, and fewer exacerbations and relapses. Similarities to children with diarrhoea-associated HUS included predominance of white race, frequent renal failure and rare relapses. The onset of TTP–HUS, with thrombocytopenia occurring 4 d after the onset of bloody diarrhoea, was also similar to that in children (Mead & Griffin, 1998; Tarr et al, 2005). Differences from children included female predominance, more frequent severe neurological abnormalities and higher mortality.

The reasons for the female predominance among adults, in contrast to children, are unknown. The female predominance among our 21 patients was probably not related to increased risk for infection with E. coli O157:H7, as reported infection rates are the same for women and men (Slutsker et al, 1997). Female predominance was also apparent across other clinical
categories of TTP (Kojouri et al, 2001; Roy et al, 2001; Vesely et al, 2003; Terrell et al, 2005). The reasons for the racial disparities, with predominantly white patients among both adults who presented with bloody diarrhoea and children with diarrhoea-associated HUS, in contrast to the ninefold relative increased incidence of blacks among patients with severe ADAMTS13 deficiency (Terrell et al, 2005), are also unknown. The frequency of renal failure in both children and adults may be related to the presumed Shiga toxin aetiology; the absence of relapses may be related to acquired immunity (Boyce et al, 1995; Besser et al, 1999). The high rate of relapses in adults with severe ADAMTS13 deficiency is probably related to the autoimmune aetiology. The greater severity among the adults, compared to children, may be related to their greater risk for thrombotic complications (Richardson et al, 2002).

Our 21 patients were identified by a request for plasma exchange, the standard treatment in our region for adults who are diagnosed with TTP or HUS. Other less severe cases may have occurred without a request for plasma exchange treatment; therefore our cohort may underestimate the frequency and overestimate the severity of bloody diarrhoea-associated TTP–HUS in adults. Since diarrhoea is not bloody in one-third of children with diarrhoea-associated HUS patients, our cohort may also underestimate the frequency of *E. coli* O157:H7-associated TTP–HUS in adults by excluding patients whose diarrhoea was not overtly bloody. The benefit of plasma exchange treatment of adults with TTP–HUS who present with bloody diarrhoea is uncertain. The potential infectious aetiology suggests that plasma exchange treatment may be unnecessary, similar to the standard management of children with diarrhoea-associated HUS (Tarr et al, 2005). Withholding plasma exchange treatment may be considered to avoid the potentially critical complications of plasma exchange (Howard et al, 2006). However, plasma exchange appeared to be effective in our patients and also in a previous report of adult patients associated with an outbreak of *E. coli* O157:H7 infection (Dundas et al, 1999). Our rationale for plasma exchange treatment was the severity of illness and the apparent responses. In addition, since bloody diarrhoea may be a presenting feature of patients with severe ADAMTS13 deficiency, plasma exchange treatment must be considered in these patients.

The importance of these observations is to increase awareness of the occurrence of sporadic bloody diarrhoea-associated TTP–HUS in adults. Increased awareness will promote prompt diagnosis and help to avoid inappropriate evaluation and management procedures. Presentation with overt bloody diarrhoea requires immediate stool collection for appropriate analysis to identify *E. coli* O157:H7 infection. Increased awareness will also improve community surveillance and increase recognition of *E. coli* O157:H7 as an aetiology of sporadic bloody diarrhoea-associated TTP–HUS in adults.

Acknowledgements

The Oklahoma TTP–HUS Registry is supported by the Hematology Research Fund of the University of Oklahoma. Drs Kremer Hovinga and Lämmlle are supported by the Swiss National Science Foundation (grant 3200B0-108261).

Conflict of interest

The authors have no conflicts of interest for the material in this manuscript.

References

C. A. Karpac et al

