Publication

One of the most widely accepted theories in aging research is the free radical or oxidative stress theory of aging, which argues that the age-related loss of physiological function and age-related increase in pathology are due to the progressive accumulation of oxidative damage. Although this theory is currently one of the most popular explanations for how aging occurs at the biochemical/molecular level, most of the evidence in support of this theory is correlative. 

Publication

Over the past three decades, dietary restriction (DR) has become the "gold standard" against which manipulations that retard aging are compared. Because DR has been shown to increase the lifespan of a wide variety of organisms ranging from invertebrates to rodents, DR is viewed as a universal aging intervention. However, a recent study suggests that the genotype of an animal is a major determinant in the ability of the animal to respond to DR.

Publication

Insulin-like growth factor-1 (IGF-1) is an important anabolic hormone that decreases with age. In the past two decades, extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age. 

Publication

Insulin-like growth factor (IGF)-1 is an important neurotrophic hormone. Deficiency of this hormone has been reported to influence the genesis of cognitive impairment and dementia in the elderly patients. Nevertheless, there are studies indicating that cognitive function can be maintained into old age even in the absence of circulating IGF-1 and studies that link IGF-1 to an acceleration of neurological diseases. Although IGF-1 has a complex role in brain function, synaptic effects appear to be central to the IGF-1-induced improvement in learning and memory. In this review, synaptic mechanisms of learning and memory and the effects of IGF-1 on synaptic communication are discussed. The emerging data indicate that synaptic function decreases with age and that IGF-1 contributes to information processing in the brain. Further studies that detail the specific actions of this important neurotrophic hormone will likely lead to therapies that result in improved cognitive function for the elderly patients.

12